# Gravitational, Magnetic and Electric Field Changes from Global Climate Change

I wrote yesterday about magnetism and gravity and temperature at gravimeter and related sensor array detector sites.  I give averages over all frequencies, but the fine details can be tracked across all frequencies from picoHertz to ZettaHertz.

Relation between gravity, magnetism and temperature at the earths surface at /?p=1893

Today I realized that if global climate change increases the global temperature by 1 degree then that will change the readings at all accelerometer sites. (NASA and other places don’t give you the absolute temperature time series, only the change. But there is a way to set global levels by measurement and agreement and sharing.)  A one degree change in global temperature will change the levels of noise at ALL gravimeter, accelerometer, barometric, microphone, infrasound, magnetic, gravitational and other sensors. The effects are not linear in temperature, but cubic polynomial.

The impact depends on the absolute value of the temperature in Kelvin.  A change of one degree Kelvin from zero Celsius is NOT the same as a one degree change from 20 Celsius.  The scale depends on the Stefan-Boltzmann relation and that is SigmaSB * ((T+1)^4 – (T)^4)

At https://www.ncdc.noaa.gov/sotc/global/202104 there is ” the 20th century average of 13.7°C (56.7°F)” that is 286.85 Kelvin.So a 1 degree difference from there mean a global shift in all

A shift in the gravimeter noise readings by 5.487 nm/s^2

A shift in the magnetic noise levels by 212.4 nanoTesla.

A shift in the electric field noise levels by 8.2217 microVolts/meter.

I am simply using the energy density of the fields in vacuum as a reference.  If the whole temperature field of the atmosphere and sky above a gravitational sensor changes, so does the energy density of the electromagnetic and gravitational fields at that location.  As I see it, the size distribution of the fluctuations in the field varies as you are talking about “gravity” (very tiny picometers and femtometers), “electromagnetism” and “magnetism” (micrometers and nanometers). But it is just one field.  It is the stuff that makes up the vacuum.  I think it has many sizes of things, each with their own unique character, properties and values. But they share “energy density”, “acceleration field”, “velocity”, “number density” and many other things.
We can use the sun and moon vector Newtonian gravitational acceleration signal to calibrate all the gravimeters, then use that to set the level for the radiation field (temperature field over and inside the whole earth) as the base. So the JPL solar system ephemeris becomes the core and groups on the outside looking back to the solar system for a reference, and groups on the inside looking outward can have a stable dataset and services to link all gravitational networks.
Since the National Geospatial-Intelligence Agency wants a stable method for magnetic location (“position and orientation”, the magnetic networks can be included and the compass orientation updated since the magnetic field and gravitational field sensors are coupled and can be inter-calibrated on common standards.
Here are my calculations:
Gravity Magnetism Electric Field and Global Climate Change Calculations Change of 1 degree Kelvin globally